R

Course Overview

100076202: itEHRZFESIE

{EiRELP:
\aR K BRER FTFE

[REE:
Randal E. Bryant and David R. O’Hallaron

(Carnegie
Mellon

University

ISREIRNE Self-Introduction

s EXER
= BB, FRRIARR/ENEEER, TTEF
= https://lyouqi.github.io/

= https://cs.bit.edu.cn/szdw/jsmi/fjs/ccl_9fc719d45d584f95a7db5cd646813ch
0/index.htm

s BED
= 20115E9HZF201556H, A&},
= 201589HZF201656H, fnt,
= 201659HZF202056H, 1,
15E)
m B3R A M
= BFRRRGH. EEIHE. BRFRES). {EFFe. AlRE
n YO E R TR R H B AR !

LRE T KT ENF B
LRET KBNS
CFRETRFHENER: (FfEiE

AW | A\ | A\ |

BEES Overview

m 1RFEIES Course theme
m T NEARSESL Five realities

s SEHTECS/ECEREZ8IR9%XZ How the course fits into the
CS/ECE curriculum

n 1BF2ZHE Course Orientation

IEFZIEA Course Theme: <
EFNRIERIE K (Systems) Knowledge is PowerT

n RFEHNR Systems Knowledge

= AMAAASRR T (WhIHEeR. AFE. HMEIKENES. MEEIRE) 1L
H (BERG. WiFss. FE. MBMNY) KN AERFAYAIT How
hardware (processors, memories, disk drives, network infrastructure) plus
software (operating systems, compilers, libraries, network protocols)
combine to support the execution of application programs

* {EA—ERF R ENE S iF it R LEBTIR How you as a
programmer can best use these resources

" RAREFARSIIHHERRRNESE, B EMELUXE]
=1 Th FEFRIRZ HRY

= REAURR(FAHER: Bk, 1/0iRE. 7. AIHER

IEFZIEA Course Theme: <
EFNRIERIE K (Systems) Knowledge is PowerT

2B IERNB AR Useful outcomes from taking course
» B IE SEVFERR R Become more effective programmers
« BB URINFIER SR Able to find and eliminate bugs efficiently

- BEEZIRARFIAFERE MRS Able to understand and tune for program
performance

» NEEECS&ECE "R RRIEEETEENM Prepare for later “systems”
classes in CS & ECE

- JmiFes. BERFE. WK, (TEIRRSEE. RANRSR. FER
%< Compilers, Operating Systems, Networks, Computer Architecture,
Embedded Systems, Storage Systems, etc.

BERANT(FRIEIFEER ¥
It’s Important to Understand How Things Worl!

n AAEEINEXLEERZS Why do | need to know this stuff?
» IMSREY, (BEARETICIISE Abstraction is good, but don’t forget reality

n KZECSFICERiEmiFHZ: Most CS and CE courses

emphasize abstraction
» IMSRAVEIESSEY Abstract data types
= EHDHT (BARIETEIESE) Asymptotic analysis
n XL BEPBREI These abstractions have limits
= 2 HIEIRZAT Especially in the presence of bugs

SEIFMREKESCIIIIERZETY Need to understand details of underlying
Implementations

» BEHRAEOARRHATREANTHE IERER B Sometimes the
abstract interfaces don’t provide the level of control or performance you
need

s
-

EEFEIH#1: Great Reality #1:
intAEEE, floatfAE5EE

Ints are not Integers, Floats are not Reals
n B xBIERBE2RFEFTFO0M5? Example 1: Isx2 > 0?

= Float’s: Yes! oo 2o 2 306... 1,307... | |...32/767...-32,768...| | -32,767...-32,%6...
. . BARA BARA Bada BAANA
vR m PO T A . %‘“"‘“
e I e Zas sl I L
A A A A WA A A A ?
" Int’s: " d ; j (i% Eﬁ

= 40000 * 40000 = 1600000000
= 50000 * 50000 =7??
m =2 - IGELESER? Example 2: Is(X+y) +z = X+ (Y +2)?
» SWEAFEFIEFESEEIER Unsigned & Signed Int’s: Yes!
" F a0 Float’s:
. (1e20 + -1e20) + 3.14 --> 3.14
. 1620 + (-1e20 + 3.14) --> 77

Source: xkcd.com/571 7

1 C ter Arithmeti Sz
IHENEAR Computer Arithmetic

s AEFEERBHN{E Does not generate random values

» BARNEEEEERIEFER Arithmetic operations have important
mathematical properties

s REERIRERE "EE" RIZZFMERPLIZ Cannot assume all
“usual” mathematical properties
» HFE2ERAENAIZEER Due to finiteness of representations
» BHIZEHWE "IN %R Integer operations satisfy “ring” properties
- RHEER | ESERFSELE Commutativity, associativity, distributivity
» ZRIEWE 1% MR Floating point operations satisfy “ordering”

properties
- B, FFSHAYE Monotonicity, values of signs
m MWZR Observation

» EETEARIITLSSIE AT IRLL_ T3 Need to understand which

abstractions apply in which contexts

» XN RERmiFTNARFIEZENBERREZERYERA Important issues for

compiler writers and serious application programmers

EBEEREC#2 Great Reality #2: <
(R RECRBS You’ve Got to Know Assenibly

n (RAJBEMN RSB R EILHIER Chances are, you’ll never

write programs in assembly
» IR ESHMAYEFMmALL{REAMY I Compilers are much better & more

patient than you are
s (BEREFC RN BT TRV KR ZXHE But:
Understanding assembly is key to machine-level execution
model
» HIsEIRATHIFERR{T/9 Behavior of programs in presence of bugs
- BIESEELXETSR High-level language models break down
= JALRERFHESE Tuning program performance

- IRRRImIEEE SR/ IR ST BIILIL T4E Understand optimizations done /
not done by the compiler

- TEARFRRAERAYSEIE Understanding sources of program inefficiency

BEEITH#2 Great Reality #2: <
(RmE CHIES You’'ve Got to Know Assenw

s (BERIREICHRIINSBHMITRIURIRZXHE But:
Understanding assembly is key to machine-level execution
model

» ST R SERS Implementing system software

- fFEe B 2SS/ E/9 B ¥R Compiler has machine code as target

- RERFWVIRETEHFRIAZ Operating systems must manage process
state

» QlFE/III RIS Creating / fighting malware
« X86; TR EEFANES x86 assembly is the language of choice!

10

SEFL/3: GHERES Sk

Great Reality #3: Memory Matters
pEtNiInEfFiEsRE —Fd FYI SR

Random Access Memory Is an Unphysical Abstraction
s IEAETRFRAY Memory is not unbounded

= B TOBECROIEIE It must be allocated and managed
» RZ N FHERSZNTFZSEIRIPREI Many applications are memory dominated

s RTES | BEERISBIBE Memory referencing bugs especially

pernicious
» 7ERYEF0ZS) _EEBE =2 s SRS Effects are distant in both time and
space

n FEEEEBEHA—E Memory performance is not uniform
= ERE N EIEESS T LA B E S nFERR AL Cache and virtual

memory effects can greatly affect program performance
* IRIEFERERARSRRARER A LSBURKRESGH Adapting program

to characteristics of memory system can lead to major speed improvements
11

AfFs| Atai=a bl
Memory Referencing Bug Example

typedef struct {
int a[2];
double d;

} struct t;

double fun(int i) {
volatile struct t s;
s.d = 3.14;
s.a[i] = 1073741824; /* Possibly out of bounds */
return s.d;

fun (0) = 3.14

fun(1l) 3.14

fun (2) 3.13999986648506

fun (3) 2.000000610351506
fun (4) = 3.14

fun (6) = Segmentation fault EZ#([&E

» ZEREERSMANE Result is system specific

12

RF5| Biai=abl

Memory Referencing Bug Example

typedef struct { fun (0) = 3.14
int a[2]; fun (1) 3.14
double d{ fun (2) 3.1399998664856
| SEEnEE E) fun (3) 2.00000061035156
fun (4) = 3.14
fun (6) = Segmentation fault EX &
fiZ %% Explanation:
Critical State 6 h
? 5
? 4
Location accessed by
d3 do 2 |
struct t = fun (1)
— alll] 1
_ al0] 0 Y

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

RTES | &= Memory Referencing Errors <%~
GESHIC+ + FREMAFRIP C and C++ do not providésapy=

memory protection
= #2835 |F#B5 Out of bounds array references

AE1ERIFEETHE Invalid pointer values
= AR AT ERA Abuses of malloc/free

AIRESE=ERFEIR Can lead to nasty bugs

» BRI RE U INBUR TR FFGRIEEE Whether or not bug has any effect depends on
system and compiler

= A=A Action at a distance
« IIARIRYSIZE_EFAIRIAIXT R EAHFEK Corrupted object logically unrelated to one

being accessed

- EHRAIERE R MR R AT sElE A AIRT AR Effect of bug may be first observe
long after it is generated

n XFPERMNZNEEIE? How can | deal with this?
= 3XFJava, Ruby. Python., MLZEZ®TE Program in Java, Ruby, Python, ML, .
» IBEAIRES R E (T AMEE SN Understand what possible interactions may occur

» AR A T ARG5S [BEfER (fFla0Valgrind) Use or develop tools to detect
referencing errors (e.g. Valgrind) "

BEWRLA: MEARNERHETRE
Great Reality #4: There’s more to

performance than asymptotic complexity

n BHEFHEEE Constant factors matter too!
= M BEEERREITEERAETRNTESE And even exact op

count does not predict performance

RS AI0F EEEEFBIRTUAIZRE D Easily see 10:1 performance
range depending on how code written

- WIMESMREBHMIMG: 5. SUEFoR. ITFEHIERR Must optimize at
multiple levels: algorithm, data representations, procedures, and loops

n WIRERRR R A A BE(LAL TEBE Must understand system to
optimize performance

» IEEEAAEIERF0HITAY How programs compiled and executed
= YNNI EFRFREREFNIRBIHEET How to measure program performance and identify
bottlenecks

= N{AIESUH M RERIBT A IRIAM CRBRRIR I ATE A4 How to improve performance

without destroying code modularity and generality

15

REFRFEEERG

Memory System Performance Example

s
-

void copyij(int src[2048][2048], void copyji(int src[2048][2048],
int dst[2048][2048]) int dst[2048][2048])
{ {
int i,3; int 1i,3;
for (i = 0; i1 < 2048; i++) for (j = 0; j < 2048; j++)
for (3 = 0; j < 2048; j++)::>‘\‘ for (i = 0; i < 2048; i++)
dst[i] [J] = sxc[i][]]~ dst[i] [J] = src[i][]]~
} }
4.3ms 81.8ms

2.0 GHz Intel Core i7 Haswell

n 2R TEAEERZE4R Hierarchical memory organization
e TR E)fR T Performance depends on access patterns

 GIRAMENRESKIBHZ4EEE Including how step through multi-
dimensional array

—

16

AR ESR
Why The Performance Differs

copyij
16000 -
14000 -
12000 '

10000 " B

8000

6000 \ (

4000

2000 ’
0

sl

HE#FH B Read throughput (MB/s)

32k

s3 128k
s5 512k
s7 8 2m
K (x8FF) s9 32 m KN (FF5) Size (bytes)
Stride (x8 bytes) sl1 m

128m

EEMELHS: i+%mwm¢ﬁ;rgmmﬁﬁ
PESS

Great Reality #5:

Computers do more than execute programs

n TR EEST R EIREM A FISE L They need to get data in and

out
* |/OR G2V SEMEAOMEREZR XEEE 1/0 system critical to program

reliability and performance

n 1TTETIEI MEZHITRIEBE(S They communicate with each
other over networks

» IRZ RS o) FMZE5 [FEMany system-level issues arise in presence
of network

- BIEHFERIFF A R/E Concurrent operations by autonomous processes
« QMBEAE]FERV(EHIT /R Coping with unreliable media

- IESESHIFEAIME Cross platform compatibility

- SZRIMEEREIRIR Complex performance issues

18

=
IBFEH9MA Course Perspective ——

s KZHEMBRELEEE 9510 Most Systems Courses are
Builder-Centric

» HENIRZELSH Computer Architecture
- FAVerilogigitiizkEea- 1888 Design pipelined processor in Verilog
= ¥ER{EZ ST Operating Systems

- SCHERERSeHIREBIERS Implement sample portions of operating
system

= JRi%E8 Compilers
- SR BRRE SRS YmiRE. Write compiler for simple language
= f%% Networking
« SCINFOREHA LR Implement and simulate network protocols

19

Sz

I BI2M0MA (8E) Course Perspective (Cont Y@=

s B IHGRELIFERE R 9> Our Course is Programmer-Centric
. BNERNIEHE TS EERANNR, BRI IIENE

Purpose is to show that by knowing more about the underlying system, one
can be more effective as a programmer

= {SH{/RBEMZ Enable you to

- RERFERE NN S2F0E3 Write programs that are more reliable and
efficient

- B5FEELEHNOSABETTAAYINEE Incorporate features that require
hooks into OS
— FlanHA. ESAEFER E.g., concurrency, signal handlers

» NIREBENIELRIME—IS—RY Cover material in this course that you
won’t see elsewhere

» NMYUNELT JETEZAYERFE Not just a course for dedicated hackers

- BN EEFERRIRERAREREG T AR, FEAKRERRER
HIR=RARIFER! We bring out the hidden hacker in everyone!

20

ARIEECS/ECEEiEER A

Role within CS/ECE Curriculum | 22 | <&

T2 ARG EAM Foundation of
Computer Systems

KEES - RN SR RIE
Underlying principles for hardware,
software, and networking

CS Systems

e 15-319 Cloud Computing
 15-330 Computer Security

e 15-410 Operating Systems

e 15-411 Compiler Design

e 15-415 Database Applications
 15-418 Parallel Computing

Imperative
Programming

18-330
18-349
18-441
18-447
18-452
18-451

ECE Systems

Computer Security

Intro to Embedded Systems
Computer Networks
Computer Architecture
Wireless Networking
Cyberphysical Systems

15-440
15-441
15-445

Distributed Systems
Computer Networks
Database Systems

'

CS Graphics

15-462 Computer Graphics
15-463 Comp. Photography

21

EH#F Primary Textbooks ——

m Randal E. Bryant and David R. O’Hallaron,

= Computer Systems: A Programmer’s Perspective, Third Edition
(CS:APP3e), Pearson, 2016

= http://csapp.cs.cmu.edu e

= This book really matters for the course! j.‘? WA “"’“" it
= How to solve labs

= Practice problems typical of exam problems

E2LR BEE,

FAEET SN RS [R5 30, UL HhRtL, 2017
http://lexue.bit.edu.cn/course/view.php?id=15848 FRFREFES

|
m \LL\I

% e

(HEFZchromel 360#%EET,) i318): https://course.educg.net FB535C

22

1PF2H{E Course Components ;i

m 145 Lectures
" SHEE Higher level concepts

m)R Recitations
» LS. SCIMEET BEMRIS. SNBSS E. B cEFE

Applied concepts, important tools and skills for labs, clarification of
lectures, exam coverage

L] ;E:K‘j Labs (8)
= RFEAYRZC The heart of the course
= /M -2JF 1-2 weeks each

 IRERFEE—FSEIREER Provide in-depth understanding of an
aspect of systems

» JEFEFNE S Programming and measurement
m £, (HAR) Exams (final)

= MR SAIEF [RIBRVIRREFZE Test your understanding of
concepts & mathematical principles

=l

23

TROg: RkERIERE Policies: Grading

m HiREX (60%) Final Exam (60%)

m 3CI& (30%) Labs (30%)

m {EMFAOHEE) (10%) Homework and Attendance (10%)

n RAGREIEETEUHIA R Final grades based on a straight
scale.

24

>
FERFIEUR Programs and Data —

m /T Topics
= (IRE. =BT CRIESTER Bits operations, arithmetic, assembly
Ianguage programs
CIESIEHIFNEIELEFIAYZE Representation of C control and data
structures

» EENRERIFImIREE S EBIHES Includes aspects of architecture and

compilers

m {EMl2 Assignments
= L1 (datalab): #2{ELL4FAL Manipulating bits
= |2 (bomblab): 3F&—HEI}EsE Defusing a binary bomb
= L3 (attacklab): {GEEENILELENRL The basics of code injection attacks

25

Sz

EHERBEIREENE The Memory Hierarchy =

m /T Topics
" FiEERTON. FHESREREN. SRE N FiERR. WEME3RE
Memory technology, memory hierarchy, caches, disks, locality

BRI R ST HRER KRS EBIXRNR Includes aspects of architecture
and OS

m {EMl2 Assignments
= L4 (cachelab): fgfE— cachetZfz5FHH1TREREILIL Building a
cache simulator and optimizing for locality.

PN AFERFRBIBER M Learn how to exploit locality in your
programs.

26

Sz

STl Exceptional Control Flow N

m /T Topics
» SR, HE. HEEE. UnixES. JEARIEBEE Hardware

exceptions, processes, process control, Unix signals, nonlocal jJumps

- EEgmIERS. BRMFRGHRREMAEHRIANR Includes aspects of

compilers, OS, and architecture

m {BMlZ Assignments

= |5 (tshlab): Z@5{RE SHIUNnixFP=FER Writing your own Unix
shell.

« WHARE—RXSEA A first introduction to concurrency

27

N
EIEGEES Virtual Memory ——

m /T Topics
= EHAFAEES. HBUEETHA. ENESTFMESED Virtual memory, address

translation, dynamic storage allocation

BRI R ST HRER KRS EBIXRNR Includes aspects of architecture
and OS

m Assignments

= L6 (malloclab): IR BE{RE SBIRFES B4R, Writing your own malloc
package

- WRFZRIRFEEZNYISCAYRLSE Get a real feel for systems-level
programming

28

Sz

PIZEF1FEA Networking, and Concurrency ==

m /T Topics
» SERFUERIRKI/O. MZEIRFE High level and low-level 1/0, network
programming
» HERIAIRSS. WebfR53E8 Internet services, Web servers

= HE. FRIRSBEEIRIT. ZF2 concurrency, concurrent server design,
threads

TEIEMI/OZ R EH 1/0 multiplexing with select
= BEENE. BERFEFARREISEBIRDIR Includes aspects of

networking, OS, and architecture

m {EMl Assignments
= L7 (proxylab): 7@ E{RE S2AIWeb{{IE Writing your own Web proxy

- FMRIRIEFNE B/ X &RHEZ Learn network programming
and more about concurrency and synchronization.

29

AT & 1B =R TERE <
Optimizing the Performance of a Pipelined ——#—
Processor

m /T Topics
= IESEEMRZREEM Instruction Set Architecture
= BRI, FEHEFHIESHCL Logic Design, Hardware Control Language
HCL
= IR {TCPUSCIR Sequential CPU Implementations
= K& CPUSLER Pipelined CPU Implementations

 EENR RIS ERIETR Includes aspects of architecture

m {EMl2 Assignments

= |8 (archlab): IR E{RE CHIRKZCPUREHLZ8 Writing your own pipelined
CPU simulator
- FRIMKEAIRSEANRITSSCIN, LLELERE learn about the design
and implementation of a pipelined processor, optimizing the performance.
30

W

248 Acknowledgments =
n A AEETFCMUARY15-213: Introduction to Computer Systems

R BN LIRS
n BOSR{E&ERandal E. Bryant #]David R. O’HallaronAY=Z51<

L
L

31

B1RITRIRRAE

A Tour of Computer System

100076202: itEHRZFESIE

{EiREH:
B K BAR FHE

(Carnegie
REE: Mellon

Randal E. Bryant and David R. O’Hallaron UIllVGI‘Slty

32

RS ¥
A Tour of Computer System =

n B B ERERhellofE2 YA dn RIHASRFF AR R FHIZFS) We
begin our study of systems by tracing the lifetime of the hello
program.

H#include <stdio.h>

int main()

{
printf("hello, world\n");

return O;

}

33

[ERRLHRI+ LT

Information Is Bits + Context
m hello.cAIASCIISZ ATz 7= ASCII text representation of hello.c

i n
35 105 110
h > \n
104 62 10
\n SP SP
10 32 32
1 o) s
108 111 44
SP SP SP
32 32 32
[N
— | -
N 1E5£§i =

C
99

\n
10

SP
32

SP
32

114

1
108

105

SP

32

119

101

u
117

n

110

112

111

116

d
100

t

116

114

114

117

e SP <

SP m a

ul n t

S t d
101 32 60 115 116 100

i n (
32 109 97 105 110 40

:f (1]
1056 110 116 102 40 34

n)

108 100 92 110 34 41

r n SP
114 110 32

LU R,

0 ; \n
48 59 10

X 53 A[EEL

different data objects is the context.

/

i
1056

)

59

125

0
111

\n
10

E
101

\n
10

\n
10

EXFRE LY

Information is represented as a bunch of bits. distinguishing

s
-

34

SCFFEE Utilities

m JRFEIES Programming language

= ANSIC

m @188 Compiler

= GNU-gcc : GNU Complier Collection (GNUZmiEssE=14)

TH Tools
= GNU tool chain TE§%

35

35

RIFZRF Compilation System s
m Linux> gce -o hello hello.c ——

printf.o
.
hello.c Pre- | hello.i ‘ Compiler | hello.s [Assembler| hello.o | Linker \ hello
processor (ccl) (as) (1d)
Source (cpp) Maodified ‘ J Assembly Relocatable Executable
program source program object object
(text) program (text) programs program
(text) (binary) (binary)
printf.o

L,

hello.c %ﬁﬂéﬂﬁ%& hello.i Qﬁﬁﬁgg hello.s 5[9%%% hello.o ﬁ&%&%& hello

v

"l (cpp) "l (ccl) (as) " (19)
JEFESE 13 THY L w7 HETE FHTE
(XFK) JBEEE (XAK) A FemE EEE
(XZK) (Z2#) (ZH#))
main

|

2 subq $8, %rsp

3 movl $.LCO, Y%edi
- call puts

5 movl $0, %eax

6 addq $8, Y%rsp

7

36

GNU’s not Unix

n BHEMYF Free software
m Richard Stallman, 1984

» SEEHIEUNIXERSE, BRI A complete
Unix-like system with source code

s —EIRE An environment
» UnixiE{ERZFGRTEEELHE All major components

of a Unix operating system
» ANEIER Except for kernel

37

Sz

C4mFEIE= The C Programming Language —=

s CIESEIETF C was developed
" 1n1969to 1973
= py Dennis Ritchie of Bell Laboratories (II/RECIG=E) .
s ZEEFRIEFS (ANSI) The American National Standards
Institute (ANSI)
= 1989 IFZHYE T ANSI ChvE ratified the ANSI C standard in 1989.
m IZEVETEN T The standard defines
= the C language

= DINR—BFERZEL, FRACGESHMERE and a set of library functions known
as the C standard library.

38

38

Sz

C4mFEIE= The C Programming Language —=

» TEfEI IR0 BIZE{EPHEIA T ANSI C Kernighan and Ritchie
describe ANSI C in their classic book
» EHENBRMIFRA “K&R” which is known affectionately as “K&R” .
m FHRANIERIE, GESE In Ritchie’s words, C is
= H2[Y quirky,
= BIRPEAT flawed,
» FEREEARIRLIN and an enormous success.

n AALEUEANILLEIN? Why the success?

39

39

Sz

C4mFEIE= The C Programming Language —=

n CGESSUNIXFEIERZH ZZ1]] C was closely tied with the Unix

operating system

* GESN—HEHMAEAUNXESRRIEES M AHFAY C was developed
from the beginning as the system programming language for Unix.

= RER7ZUnixRIZLAK FrE 215 T EHIEREEREFACES EHY Most of
the Unix kernel, and all of its supporting tools and libraries, were written in C.

= fEE70FSHIZISOSFL RHAUNIXERZFRI 2T, B AT iaiEmMC
1IBESHEIR_EE As Unix became popular in universities in the late 1970s and
early 1980s, many people were exposed to C and found that they liked it.

= HFUnix/ L F£8f2RCRER, BErLURAEMIZERIFRIES, XF
FRNACFIUNIXERE T E) iZAISZFF Since Unix was written almost
entirely in C, it could be easily ported to new machines, which created an even
wider audience for both C and Unix.

40

40

Sz

C4mFEIE= The C Programming Language —=

CiEZ=7/vigia/£E C is a small, simple language.

" RITERE— 1AM MIERN, B —1EE, R8TARE
B9iZ1+ The design was controlled by a single person, rather than a committee,
and the result was a clean, consistent design with little baggage.

* KARXANPBAAXERIFIFFISGIFEAR T BANES KiNEE, 2B
26171Q The K&R book describes the complete language and standard library,
with numerous examples and exercises, in only 261 pages.

" CESHERMETIENS T2 BRI RRNTEN L The
simplicity of C made it relatively easy to learn and to port to different
computers.

41

41

Sz

C4mFEIE= The C Programming Language —=

12 =S 2N ERTIETHT C was designed for a practical
pUrpose.

» CIESERITAREIUNIXIRERFAY C was designed to implement the
Unix operating system.

" 5%k, BEft ARIEERRIX ES LRSI RS (1 EZRIIERF Later,
other people found that they could write the programs they wanted, without
the language getting in the way.

42

42

C4mFEIE= The C Programming Language —=

E__E
CES&

Sz

KEAERREAIE I C is the language of choice for

system Ievel programming

s BIEE

i 1V

IRFZFA4RE There is a huge installed

base of appllcatlon level programs as well.

43

43

CiRtEig

SR, BiF

k&

&= The C Programming Language =

3F-Fi1

Sz

SRR RFATESIT However, it is

not perfect for all programmers and all situations

CESHEE RIEMEZARIEEIRAI— 1R WRE C pointers are a
common source of confusion and programming errors

CEStER=EHRMESNEINSGT, HIANSEFIXI5: C also lacks explicit

support for useful abstractions such as classes and objects

» (RC++FavaiXiFEr X N AR IEFRIFNESHER 7 IX LRI Newer

languages such as C++ and Java address these issues for application-level

programs

44

44

Sz

CGiE= i Standardization of C ——

n [FIATN/RSCIEZECIESHRAN The original Bell Labs version of C
» KARZE{EBYZE1hR the 15t edition of the book K&R
m 1989F & ANSI| CirE The ANSI C standard in 1989
» ZEFEEREFS The American National Standards Institute
» (2T BRZEN=EARY A T Modify the way functions are declared
s K&ARZEAERIZE2hR the 2" edition of the book K&R
= |SO C90 (The International Standards Organization[EPrirEHZR)

45

45

Sz

CGiE= i Standardization of C ——

m |1SO C99
= DI NT—LEHH9EEESERY Introduced some new data types
" N EAANRTESRIEIES AN A RRME 72355 Provided support for
text strings requiring characters not found in the English language
m GeeszHF Gece supporting
= Unix> gcc -std=c99 prog.c
= -ansi and -std=c89 have the same effect 3{ER48[E]

46

46

GESHnEM Standardization of C

s
-

C version gcc # S {T#EIR command line option
GNU 89 none, -std=gnu89
ANSI, I1SO C90 -ansl, -std=c89
1ISO C99 -std=c99
GNU 99 -std=gnu99
1SO 11 -std=c11
GNU 11 -std=gnull
e ACM:

o ITEHIE Association of Computing Machinery

e |EEE:

. ES5HEFTIRIFHL institute of Electrical and Electronics Engineers

47

TREERAMALESAGSMN
It Pays to Understand How Compilation ==

Systems Work

n (LILFERRERE Optimizing program performance.

PR ESE R AR RIFAIES Modern compilers usually produce good
code.

S E AR SRR ImESS A RN GE DR IES AR T T\
need a basic understanding of machine-level code and how the compiler
translates different C statements into machine code.

IEfR et HINAYEER Understanding link-time errors.
= —ES AFIRRIIRIEIEIREP ST IR FE X, ol R B

some of the most perplexing programming errors are related to the operation
of the linker, especially trying to build large software systems.

m BT ERIE Avoiding security holes.
» BPX i iEREIER ARSI MNEI MRS st L REmANEER
buffer overflow vulnerabilities have accounted for many of the security
holes in network and Internet servers.

LT

48

S—aEAETEN

The first general purpose computer

m ENIAC
» BB FEF RS THER Electronic Numerical Integrator And Computer
» 1946 FEEY EZRBIIAKFH S Delivered by UPenn. on Feb. 14, 1946
= John Mauchly. John Eckert ' | 3 :

49

D R R RS %i
cture

Computer Hardware - Von Neumann Archite

54 /F2F Instructions / Program

Malin Arithmetic Control
Memory Unit Unit
» AC F|)|:\C>:
SR

EDVAC Input/Output

o . en:First Draft of a Report
Electronic Discrete Variable I Unit I P

. on the EDVAC
Automatic Computer

E.g. Storage

50

50

WIEREHERFEFEERAFTEPNES S
Processors Read and Interpret Instructions —#—
Stored in Memory

linux> ./hello
hello, world crY
) Register file
linux>
PC ALU

System bus Memory bus

] l /0 l Main
bridge memory

I/O bus |:| D D

Expansion slots for

other devices such

usSB Graphics Disk as network adapters
controller adapter controller

1 I !
Mouse Keyboard Display hello executable
W stored on disk

Bus interface

51

RRIE(FHRk

Hardware organization of system ==

PC a ALU

: .%@E 2 Wﬁ 2
R @ /o <:>m%%§
/0 B4]:D:[::>
JL JU v L e, me
[2% 3 e s —
USBH% il 4% I e % REA A A | SRR
bR B STV

TFIETERG AT [HThel lo
Disk

AT XA F

52

—,_

1Z1Thellof2/% Running the hello Program Sz

PC a ALU

Sk 7 fuse /hello”

U

HHAF>

/10 B4 ‘
VA, AN
ZRIE N 2 — 2RI

RfARE S HEmase | B A
Bin BE R v
Ar~ Rt

A
“/hello"” i}

BRI MATIE LR ISR 17 >

Loading the executable from disk into main memory=ig&=

PC : ALU

"hello,world\n"

hello ftf5

E XA

HHAF>

Ny

USB
25

T

Bir BE

U

Bl E B4R

l

kR AR

5, B 5
BT 2 — KN
51 1

FIEHRE _ FAhello

AT AT X A

54

B FHFBRNAFEEARTRER >

Writing the output string from memory to the displayg™=

BEEREXH :
PC a ALU

"hello,world\n"

o2t TrriEse
hello G5
< = >
PR, RN
USB HIG AL AR — 2RI
o] 52 B g% RS) 58 B2 18
mim W L TEREAE RS 1

“hello,world\n" M | pellonf$4T S0

55

IR EFEREE
Caches Matter

s MEBRA N FERE IS AFFELE R

continues to increase

s
-

processor-memory gap

s /NIRRT RSB FR AIcachefziE=E (f&FRcache)

smaller, faster storage devices called cache memories (or simply

caches)

s FHFRARHSHE LD R E i =shE 4

Y ANSCIR implemented with a

hardware technology known as static random access memory

(SRAM). cpuits i

: %ﬁ%ﬁ§$;
= TR 2 AT :
g & (=| |

é//
S IR <j> v <:>3‘57(?ﬁ%%%

56

FHERERE

A

)9"\2*1‘5.1

Storage Devices Form a Hierar%l?f?

} CPUBH B R R AR BB
=
. L1/ L1ERE \
i (SRAM) } RE T e AP ey
C==0p) &
o L2E R ETF
e SRAM
() 2% R B R R B L3 A B
ERERT
L3 ERERF
(SRAM)
L3R A R R TR R
#17
Hk .
o L4: T
G (DRAM)
6
i 7R IR A R RO A
L5: A ith = 2 IF
(R R)
A R R
ErTEY Yane
) S 4
L6: nFE TR A

(A XHZRST, WebhiS547)

57

RIER R
Operating Systems

m 1960°s
= |BM 0S/360, Honeywell Multics,

m Fernado Jose Corbato
= |EEE Computer Pioneer Award, 1982
= ACM Turing Award, 1990

58

RIER R
Operating Systems

m Unix
= Bell Lab, DEC PDP-7, 1969
= Ken Thompson, Dennis Ritchie, Doug Mcllroy, Joe Ossana
1970 Brian Kernighan dubbed the system “Unix”
= Rewritten in C in 1973, announced in 1974
BSD (UC, Berkeley), System V(Bell lab)
= Solaris (Sun Microsystem)

m Posix standard

m Ken Thompson, Dennis Ritchie
= ACM Turing Award, 1983

59

L Inux

m 1991, Linus Torvalds

m Unix-like operating systems

m 386(486)AT, bash(1.08), gcc(1.40)

m Posix complaint version of Unix operating system

m Available on a wide array of computers
= From handheld devices to mainframe computers
= wristwatch

We have seen a bunch of Operating Systems

2= Windows 10 [\, Linux [gElflels\{e}

[TRE

PO =30 @8- " 'ORO0B- o

61

Operating Systems are everywhere

62

IBERAZ R S
Operating System Manages Hardware

EZT@TET%Z }Software A
LT EA7 /08% |} Hardvare mfr

Layered view of a computer system

ITEIARSGHD ERE

i
A
o N
' 7 |
AL |
4 N
- 3
A |
I 4 Y
b 7 55 A7 /08 %

Abstractions provided by an operating system

B ERGHRHAHSRRR

63

IR ERAE R ¥
Operating System Manages Hardware .

o FIERAERFEFNRREFAE A Z [EHEAR— 1SR think

of the operating system as a layer of software interposed between
the application program and the hardware

s B PNEZAHEBY: two primary purposes:
= (RIPRE(ARG L SR M FRIR AT to protect the hardware from misuse by

runaway applications.

" AN IR R RS —AIWE IR FERMERERIIREEFRE to

provide applications with simple and uniform mechanisms for manipulating
complicated and often wildly different low-level hardware devices.

n EAHS: HR. EEASE fundamental abstractions:
processes, virtual memory, and files.

» HEI/OIZERIIHS files are abstractions for 1/0 devices,
» EFERS RN E/OIRFAYHSR virtual memory is an abstraction

for both the main memory and disk 1/O devices

 ATEEANERE. FFHI/OFAIISR processes are abstractions for the
processor. main memory. and 1/O devices. 64

#H2 E TR e

Process context switching

MreadiR[a] ___ AR } £ FX L

AP RE

HEZA i 128
iNgE] , |
1 i B
read ---* : !
*\\ﬁ\\, Y
B L P

A process is the operating system's abstraction for a running program.

R FR I TIE RIS

65

REIUTFERS

Virtual Memory
s BPHEE R —ERIRERE

virtual address space.

0x08048000 (32)

I

s
-

FRAFERIENBLZSE)

Each process has the same uniform view of memory, known as its

Kernel virtual memory

User stack
(created at run time)

v
.T.

Memory mapped region for
shared libraries

I

Run-time heap
(created at run time by malloc)

Read/write data

Read-only code and data

0x00400000 (64)

0

I

Memory
invisible to
user code

printf function

%

Loaded from the
hello executable file

66

HIERI IR S (R)

[ZURI7 e TSR,
EATTHERERR T
Bs, B NHZEREIR
CIBERER.

Virtual memory is an
abstraction that provides
each process with the
illusion that it has exclusive
use of the main memory.

SHEEEIIPIFEE
—BH, WRE
/8,

REFPIT AR

v

NI EIARTE

AP 1%
GEITHEIE)

v
T

HZFERI AT R X 5

T

SITE HE
(f£5547R Amalloc Bl f#4)

152/ 4

RZRIBRHE

CISINEE Dy

|

prinfpREN

, MhelloRI$44T 3CfF
In#HER

67

ARG IAERMEES

Systems Communicate with Other Systems ~—#—

Using Networks
n EBE—F/0KE, HEIZEE

Sz

M TIERE A

network is another 1/O device, Computers are connected by

networks

Host Host e Host

Host Host R Host

| |
LAN
WAN

LAN

68

Sz

ZitHE Cloud Computing e

n ITEVRFS S F=1TE Computer Systems support the cloud
computing

e = ' .
Wireless
Ethernet

T
m-

69

69

pE ¥
Important Themes ===

m AmdahlE1E Amdahl’s Law

= WEGHENSBOINER, ENRFEA RN INEUR TiZE o iYE
EMFNNIEFERE speed up one part of a system, the effect on the overall
system performance depends on both how significant this part was and how
much it sped up. 1

(1—a)+a/k
" 1 ZZR BT Bl GEESa requires a fraction o of this time
" 1ZE8 i Ee R B k{Z improve its performance by a factor of k.

IR SRR F A SECAERE RRIER2 AYERE must improve the speed

of a very large fraction of the overall system.

S =

1
S =
Q- a)

70

pE ¥
Important Themes ===

m FF&F1FF{T Concurrency and Parallelism

» HATERNEAS/NERINER X MEELS: concurrency refer to the
general concept of a system with multiple, simultaneous activities

» HITIERHAER S TERR parallelism refer to the use of concurrency to
make a system run faster.

» T LETENRZHINSZ NESEx I Parallelism can be exploited

at multiple levels of abstraction in a computer system.

" =NER, BERFERGHEFNGESEIRIK three levels, working from
the highest to the lowest level in the system hierarchy

n 1. ZF2LFF & Thread-Level Concurrency
 IOHTEmSRER E, SN EFREINIT, SEFFA building on the

process abstraction, multiple programs execute at the same time, leading to
concurrency.

" ERSERLAER—HEREZMEHAR With threads, have multiple
control flows executing within a single process.

7

pE ¥
Important Themes ===

n 1. ZFELFF & Thread-Level Concurrency
= NERAMEES R FRIZUTERE RS, RIASIZFIEEZRFIE from uniprocessor

system to multiprocessor system. recently multi-core processors and
hyperthreading.

" EBLIEMRANRENZE%RE, —InitRE—CPURITZMNMEHIImATRA
Hyperthreading, called simultaneous multi-threading, is a technique that
allows a single CPU to execute multiple flows of control.

» ERIEFEWRLASZ &R TYRS the program is expressed in terms of
multiple threads.

m 2. I5S 31T Instruction-Level Parallelism

= PRSI LAI—RHPITES SIS, FRAIESHRFTT modern processors
can execute multiple instructions at one time, known as instruction-level
parallelism.

" TKZRIGER, A — R EIRR— R SRIFITIESR use of pipelining,
an execution rate close to 1 instruction per clock cycle.

72

EETH =
Important Themes ===

m 2. i8S FF{T Instruction-Level Parallelism
" tE—NERR— SRS EIRATHTIESR, FRTEIRENIERS execution rates
faster than 1 instruction per cycle, known as superscalar processors.
n 3. BISSRZEUER (SIMD) FH17 Single-Instruction,
Multiple-Data (SIMD) Parallelism

» FEIESTERHITHITSMEIE a single instruction to cause multiple
operations to be performed in parallel

= Hbimigas st MM CREREIMESIMDIE4 T4 some compilers attempt to
automatically extract SIMD parallelism from C programs,

= B O(ERmRes S ISR EEUER LR SIE write programs using
special vector data types supported in compilers.

73

pE ¥
Important Themes ===

n ITEVEZSEFHFEEM The Importance of Abstractions in
Computer Systems

* MSAIEREITENRIZPEAEENILS Z— The use of abstractions

IS one of the most important concepts in computer science.

n 1TTENESEPREBRIT L IMHESE several of the abstractions in
computer systems

» 1B SRR IR SEPRb IR SSIEFRYINSR the instruction set architecture
provides an abstraction of the actual processor hardware.

 BERFRRMH=MSR: HERI/ORESR. BRIEAERNEN
. HEVEzTIEREYSR OS provides three abstractions: files as an
abstraction of 1/0O devices, virtual memory as an abstraction of program
memory, and processes as an abstraction of a running program.

= SR EMWEREB MRS, 81F0S. IESFIER a new
one: the virtual machine, providing an abstraction of the entire computer,
including the operating system, the processor, and the programs.

74

a|: EihE y — MTEVES

n GES . ZFRECGER
s B FENEEREMNKCIER, 58, HRHE,
s NRFE . BEMENCGEREREENAHIITE

O %,\5“:

" 1. RFINIRTRCER,;

= 2. R gmiECRERT

= 3. RFEN IR TIIFRI eI I TIET
- REAVREAZAR
- AFNFERST
- RFEHRER SR
- DHRESR: WK

75

WIRTRY IR I Sk
Response Time and Throughput

m Mz AT[E] Response time
» (H—I{ESSFREERYE] How long it takes to do a task

» 501 & Throughput
» FEANAETRAYS T{EETotal work done per unit time
- BIAMESS /B /. . BB e.g., tasks/transactions/... per hour

0 lll’ﬂ])E'LElﬂ“l‘Eﬂ?Fﬂﬁﬂi%ﬁD@%«‘)\ FEIZ=Z20E How are

response time and throughput affected by
= ERAMEES R RAYARZA Replacing the processor with a

faster version?
» IENEZAYLMEES? Adding more processors?

n EFA MEER E X E NI N ATE] We’ll focus on

response time for now...

76

tERd R Sz
Relative Performance ——

n TENMERES : 1/3147RF18] Define Performance = 1/Execution
Time

m “XELYHRN{Z" “Xis ntime faster than Y XBYMEBE/YRIMERE
= YRYITETE])/XAJHIT = n

Performanc e, /Performance,,
= Execution time, /Execution time, =n

Ban: =1TREREAYRTE] Example: time taken to run a
program
= 10sonA, 15s0n B

= B¥{THJIB)/A$1THYE] Execution Timeg / Execution Time,
=15s/10s =15

« PRLA, ALEBER1.54Z So Ais 1.5 times faster than B

77

MEHITEIE Sk

Measuring Execution Time

n 22[FA318] Elapsed time
= SUEAETE], E3EFTB 5 ME Total response time, including all aspects

« QMR /0. BMERSFE. =IABTE] Processing, 1/0, OS overhead,
idle time

= RE T EGMHERE Determines system performance
s CPUHY[E] CPU time
= SWFHEEREN{EESTEANE _FRYRTIE Time spent processing a given job
. })Ehﬂﬁl/ OmJal, Ee{EWE=hT(g] Discounts I/O time, other jobs’
shares

= AP CPURTEIFIZZCPURYEI¥IRY, Comprises user CPU time and
system CPU time

» NEERESZCPUFNRFMBENIE/INAE Different programs are affected
differently by CPU and system performance

78

CPURI$REIHA CPU Clocking S
n B IRA AR B ERT tEZREH] Operation o?

digital hardware governed by a constant-rate clock

b] 40
<+«—(lock period— | |
I (9538 Clock| | ' -

(cycles)

Bl A4 A 55

Data transfer L< >)< >< >

and computation

FHIRE Update statp <:> <:> <:>)
PR —/RATEMEIAMTERRTIE) Clock

period: duration of a clock cycle

= €.9., 250ps = 0.25ns = 250 X 10-1?%s

ATEIER (RR) . SF0EhaYEEAEL Clock
frequency (rate): cycles per second

= €.9., 4.0GHz = 4000MHz = 4.0 X 10°Hz 79

Sz

CPUHJIa] CPU Time =
CPU Time = CPU Clock Cycles x Clock Cycle Time
~ CPUClock Cycles
Clock Rate

» CPURJIE)=CPURJ T EHAEXAT T EHBATIR) = CPURS T fEHA
S/ BT EERER

—EZ Performance improved by

=/ DETEREIEBZNE Reducing number of clock cycles
= HEENATEEERSER Increasing clock rate

* g

MAME B RS P IRERFNEHBE < [BiH# 1 TH = Hardware

designer must often trade off clock rate against cycle count

80

CPURJERHI CPU Time Example

s
 ITEVIA: 2GHzET#SIER, 10#PCPURY(E] Computer A: 5
2GHz clock, 10s CPU time
= iZIHTEAB Designing Computer B
» BiRriAZEI6FPCPURYE Aim for 6s CPU time
» ATLAMHEIERAAER, (BERSSEEE.2Z0IATTERAZL Can do

faster clock, but causes 1.2 X clock cycles

s TENBRIRTFAUAZEIZSR? How fast must Computer B
clock be?

Clock Rate,

_ Clock Cycles; 1.2xClock Cycles,
CPUTime, 6s

Clock Cycles, = CPU Time, xClock Rate ,

=10sx2GHz =20x10°

1.2x20x10° B 24%10°
6S 6S

Clock Rate, = =4GHz

81

IESEFICPI Instruction Count and CPI o
Clock Cycles = Instruction Countx Cycles per Instruction ¥

CPU Time =Instruction Countx CPIx Clock Cycle Time

B Instruction Countx CPI

Clock Rate
n [JTHEIHREN =182 X BRI TH/EIHAEN
« CPUBHEI=3S<% X CPI X RIS EHARTIEI=IES 40X CPI /RS:
i
n FEFRAVFES 2N Instruction Count for a program
» B, ISAFNZRIEESRTE Determined by program, ISA and compiler
m Y235 CPI Average cycles per instruction
= (RCPUREHIRTE Determined by CPU hardware
» YNERAEIESEARBICPI If different instructions have different CPI
« ECPISHHES RS TEES/NN Average CPI affected by instruction mix

s R TERMCPULEARIERF ZBICPIEZ /LR CPI varies between
programs on a given CPU 82

Ll

CPI7x=f5ll CPI Example

Cycle Time = 250ps, CPI = 2.0

Sz

n iHEHA: IFERERI=250ps, CPI=2.0 Computer A:

n iTEHB: B$9EEI=500ps, CPI=1.2 Computer B:

Cycle Time = 500ps, CPI1 =1.2
m [@FEAY ISA Same ISA

n I NEIR, RZ/D? Which is faster, and by how much?

CPU TlmeA = Instruction Count x CPIA x Cycle T|meA

=1x2.0x250ps=1x500ps «+—

A is faster...

CPU TimeB = Instruction Count x CPIB x Cycle TimeB
=1x1.2x500ps=1x600ps

CPU TimeB _ 1x600ps 1.

CPUTime, Ix500ps -0y this much

A

83

CPIEFZRIMT CPI in More Detail ;i

n IRAEREESTFEAFRYBTEPEHAZL If different
Instruction classes take different numbers of cycles

Clock Cycles = » (CPI, xInstruction Count,)
i=1

DY CPI/9 Weighted average CP!

lock I L Instruction nt.
cpy_ Cloc .Cyc es ~3(cpx st uct_o Cou tlj
Instruction Count <3 Instruction Count

FEXTELER Relative frequency

84

CPI:%f| CP1 Example S
n ERIRIFERICREFSIERA. B, GBS ‘

Alternative compiled code seqguences using instructions
In classes A, B, C

Class

CPI for class

IC in sequence 1

DIN|IF]|D>
RN
R INIWIO

IC in sequence 2

FF51: Sequence 1: FF52: Sequence 2:

IC =5 IC=6

= AF¥9/EHA Clock Cycles = AF$9/EHA Clock Cycles
=2X1+1X2+2X3 =4X1+1X2+1X3
=10 =9

= Avg. CPI =10/5=2.0 = Avg. CPI=9/6 = 1.5

85

Sz

EgEIVE Performance Summary —

CPU Time — Instructions Clock cycles ~ Seconds

X
Program Instruction Clock cycle

s CPUBTEI =8 MEFRHESE X B58<SRIBTTHEHREZN X
F AT EHARYA E)
n MEEEERT Performance depends on
= 5% 2IWIC, BJgeaZNm CPI Algorithm: affects IC, possibly CPI
= IEFRIES . E2ImIC. CPl Programming language: affects IC, CPI
» 71%88: 0WIC. CPI Compiler: affects IC, CPI

w IESEERRLEEN: 220mIC. CPIFNRTEREHER Instruction set architecture:
affects IC, CPI, T,

86

MIPSHIEEEE S S
MIPS and Performance Metric e

s MIPS: B ITE H5EIE<S MIPS: Millions of Instructions
Per Second
= 8 B11TE Doesn’t account for
« ANEITEVZEIRIISAANE Differences in ISAs between computers

« AEIES ZIBIINEZEANE Differences in complexity between
Instructions

MIPS =

Instruction count
Execution timex10°

B Instruction count _ Clock rate
~ Instruction count x CPI £10° ~ CPIx10°8

Clock rate

87

ol =hF 7 — MTEYERSR ——

O C.LI:IIZI. \VZII%ICEEF%_
H5: F=MNEEZBEMNNCER, NEE, 74
a zl.n%%:—u_. BRI CEE R EEEN R TAY

m 2
» —NCREEFNESREE (RRERSE. fwmiE. #1iT7)
= 1. TFEAAVRE R
= 2. (FHELH
= 3, Qb3S
= 4. HEEEE (IELL. MWNZAdE), &Fit=ZE, CPU RJE). AJEhEER. BY
Tom==, CPI)
= 5. ISR
» 6. FIHIMES (320:I#128. G6AIHSE. 32(FEFR5. GANITERR)

88

n FEIFMESR ZERBRFE—FE ?
REBFEITA?

o TMCEI“E’JE PRI EETA?

s ATRITRERFBTAHKN ?

n EREEHL?

n BERGBIERZTA?

89

AR\ i

FE—EHE

[T

s — M CEFRVEGRE (RRBRS. fwmiFE. H17)

w 1. TTEVRIREAER,

m 2. IFHELETL

m 3. {hIHEE

e 4 MHEEEE (NEEL. MWNAYE. Fix=. CPU RJE. BY
FREHA. AotPsmER. CPI)

m 5. LR

90

	幻灯片 1
	幻灯片 2: 授课老师介绍 Self-Introduction
	幻灯片 3: 概览 Overview
	幻灯片 4: 课程理念 Course Theme: 系统知识非常强大 (Systems) Knowledge is Power!
	幻灯片 5: 课程理念 Course Theme: 系统知识非常强大 (Systems) Knowledge is Power!
	幻灯片 6: 理解系统的工作原理非常重要 It’s Important to Understand How Things Work
	幻灯片 7: 重要事实#1：Great Reality #1: int不是整数，float不是实数 Ints are not Integers, Floats are not Reals
	幻灯片 8: 计算机算术 Computer Arithmetic
	幻灯片 9: 重要事实#2 Great Reality #2: 你必须懂汇编语言You’ve Got to Know Assembly
	幻灯片 10: 重要事实#2 Great Reality #2: 你必须懂汇编语言You’ve Got to Know Assembly
	幻灯片 11: 重要事实#3：存储器很重要 Great Reality #3: Memory Matters 随机访问存储器是一种非物质抽象 Random Access Memory Is an Unphysical Abstraction
	幻灯片 12: 内存引用错误示例 Memory Referencing Bug Example
	幻灯片 13: 内存引用错误示例 Memory Referencing Bug Example
	幻灯片 14: 内存引用错误 Memory Referencing Errors
	幻灯片 15: 重要的事实#4：性能不仅仅是渐进复杂度 Great Reality #4: There’s more to performance than asymptotic complexity
	幻灯片 16: 内存系统性能示例 Memory System Performance Example
	幻灯片 17: 为何出现性能差异 Why The Performance Differs
	幻灯片 18: 重要的事实#5：计算机不仅执行程序还做更多的事情 Great Reality #5: Computers do more than execute programs
	幻灯片 19: 课程的视角 Course Perspective
	幻灯片 20: 课程的视角（续）Course Perspective (Cont.)
	幻灯片 21: 本课程在CS/ECE教程中的角色 Role within CS/ECE Curriculum
	幻灯片 22: 主教材 Primary Textbooks
	幻灯片 23: 课程组件 Course Components
	幻灯片 24: 策略：成绩评定 Policies: Grading
	幻灯片 25: 程序和数据 Programs and Data
	幻灯片 26: 存储器层次结构 The Memory Hierarchy
	幻灯片 27: 异常控制流 Exceptional Control Flow
	幻灯片 28: 虚拟存储器 Virtual Memory
	幻灯片 29: 网络和并发 Networking, and Concurrency
	幻灯片 30: 优化流水线处理器的性能 Optimizing the Performance of a Pipelined Processor
	幻灯片 31: 致谢 Acknowledgments
	幻灯片 32
	幻灯片 33: 计算机系统漫游 A Tour of Computer System
	幻灯片 34: 信息是比特位+上下文 Information Is Bits + Context
	幻灯片 35: 实用程序 Utilities
	幻灯片 36: 编译系统 Compilation System
	幻灯片 37: GNU’s not Unix
	幻灯片 38: C编程语言 The C Programming Language
	幻灯片 39: C编程语言 The C Programming Language
	幻灯片 40: C编程语言 The C Programming Language
	幻灯片 41: C编程语言 The C Programming Language
	幻灯片 42: C编程语言 The C Programming Language
	幻灯片 43: C编程语言 The C Programming Language
	幻灯片 44: C编程语言 The C Programming Language
	幻灯片 45: C语言标准化 Standardization of C
	幻灯片 46: C语言标准化 Standardization of C
	幻灯片 47: C语言标准化 Standardization of C
	幻灯片 48: 了解编译系统如何工作是大有益处的 It Pays to Understand How Compilation Systems Work
	幻灯片 49: 第一台通用目的计算机 The first general purpose computer
	幻灯片 50: 计算机硬件-冯诺依曼体系结构 Computer Hardware - Von Neumann Architecture
	幻灯片 51: 处理器读并解释存储在内存中的指令 Processors Read and Interpret Instructions Stored in Memory
	幻灯片 52: 系统的硬件组成 Hardware organization of system
	幻灯片 53: 运行hello程序 Running the hello Program
	幻灯片 54: 将可执行文件从磁盘加载到主存中 Loading the executable from disk into main memory
	幻灯片 55: 将输出字符串从内存写入显示器 Writing the output string from memory to the display
	幻灯片 56: 高速缓存至关重要 Caches Matter
	幻灯片 57: 存储设备形成层次结构 Storage Devices Form a Hierarchy
	幻灯片 58: 操作系统 Operating Systems
	幻灯片 59: 操作系统 Operating Systems
	幻灯片 60: Linux
	幻灯片 61
	幻灯片 62
	幻灯片 63: 操作系统管理硬件 Operating System Manages Hardware
	幻灯片 64: 操作系统管理硬件 Operating System Manages Hardware
	幻灯片 65
	幻灯片 66: 虚拟存储器 Virtual Memory
	幻灯片 67
	幻灯片 68: 系统之间使用网络通信 Systems Communicate with Other Systems Using Networks
	幻灯片 69: 云计算 Cloud Computing
	幻灯片 70: 重要主题 Important Themes
	幻灯片 71: 重要主题 Important Themes
	幻灯片 72: 重要主题 Important Themes
	幻灯片 73: 重要主题 Important Themes
	幻灯片 74: 重要主题 Important Themes
	幻灯片 75: 回顾：漫游了一下计算机系统
	幻灯片 76: 响应时间和吞吐量 Response Time and Throughput
	幻灯片 77: 相对性能 Relative Performance
	幻灯片 78: 测量执行时间 Measuring Execution Time
	幻灯片 79: CPU时钟周期 CPU Clocking
	幻灯片 80: CPU时间 CPU Time
	幻灯片 81: CPU时间示例 CPU Time Example
	幻灯片 82: 指令数和CPI Instruction Count and CPI
	幻灯片 83: CPI示例 CPI Example
	幻灯片 84: CPI更多的细节 CPI in More Detail
	幻灯片 85: CPI示例 CPI Example
	幻灯片 86: 性能小结 Performance Summary
	幻灯片 87: MIPS和性能度量 MIPS and Performance Metric
	幻灯片 88: 回顾：漫游了一下计算机系统
	幻灯片 89: 思考
	幻灯片 90: 第一章的重点

